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1EAST p-th POWER POLYNOMIALS ON

A FEAL FINITE POINT SET'

by
T, S, Motzkin® and J. L. Walsh®

It is our object in the present paper to study best approximation

on a set B consisting of a finite number of distinct points

Zys Zps "t s B to a given function f(z) defined on E, by polynomials

pn(z-) of given degreeh n(< m - 2), As deviation or measure of approxi-

mation we use primarily the sum
(1) k(;(l pklf(zk) 42 pn(zk)l 3 p.k >0 9

where the y. are given, but also use various broad generalizaticns of
(1). The analogous problem for approximation on a firite isterval,

where (1) is replaced by an integral, has been studied by Korkine and

Presented to the American Mathematical Society, December 1952,
An abstract was published in Bull. Amer. Math, Soc., vol. 59 (1953) p. 163.
1This work was performed under a contract with the University of
California for the National Bureau of Standards, and under a contract
with Harvard University; it was sponsored (in part) by the Office of
Naval Research, USN, and by the Office of Scientific Research, USAF,
2Univerﬁty of California and Harvard Umiversity
3 Harvard Unlversity and National Bureau of Standards

hAny polynomial aozn + alznw1 + ceo + g is said to be of degree n.



Zolotareff {6], and for apprcximation by linear families more general

than polynomials by Laasonen [7].

An important special case of the problem of approximation is the

1
choice f(z) = 2™ 3 here the difference f(z) - pn(z) is the

1-polynomial of degree n + 1, namely the pclynomial

Tn+1(z) = Zn+1 i blzn + °¢° + b, of best approximation on E to the

function zero,

Qur entire discussion deals largely with the separation of points
of a real set E by zeros cf Tn+l(z) or by points of interpolation of
pn(z) to £(z)o

Of especial interest is (1) as a measure of approximation on a
real set in the case n = m ~ 2, for then (as we shall prove) the
poiynomials of best approximation to f(x) on E can be found by inter-
polation to f(x) in certain preassigned points of E which are independent
of f(x). This is analogous to the resulis of Laas~nen,

We emphasize approximation on a rsal set E, but some of the present
results apply also to a non-real set, and a later paper will be devoted
to the more general case, In &1 we mention briefly existence and
non-uniqueness of extremal polyncmials. In &2 we consider best
approximation as determined by interpolation. In 53 we study separa-
tion by E of the zeros of T-polynomials for general deviation, and in
8 |, approximation by arbitrary families of functions. In §5 we

consider the totality of extremal polynomials as a convex set, in 86

e



approximation in the sense of least p-th powers (0 < p < 1), and in
3 7 we congsider further the separation properties of zeros of
T-polynomials. Then 28 is devoted to the specific determination of
the polynomials Tm-:l(x)i‘ and finally 89 to the mutual separation of
zeros of T-polynomials of various degrees,

&1. Existencz and non-uniqueness of extremal polynomials. The

existence of an extremal polynomial follows from the fact that if a
sequence of polynomials of degree n 1s bounded on E, each coefficient
is bounded and hence there exists some subsequence which converges on E,
But the ex%remal pclyncmial need not be unique., Even in the
simple case m = 2, z, * 0, By = 1, f(z) * 2, Py * 1, every pclyncmial of
degree zero of the form po(z) *p, O £ il £ 1, yields approximation
with measure (1) equal to unity.
As another illustration of the non-uniqueness of the polynomial of

best approximation, we mention z; =0, z, = S(0<8<3), 2,=1-8

-

1
z), * B f(zl) = f(zh) = 1, f(z2) x f(zj) =0, Py = 1, any real linear

’

function whose graph cuts the non-norizontal sides of the trapezoid
(0, 1), (¢, C)., (1 -9, 0), (1,1) is a polynimial of degree unity of
best approximation., Also in the important case of the T-polynomial,
Tn+l(z) may fail to be unique.

82, Approximation determined by interpolation, The case m & n+l

is trivial, for in that case there exists an admissible polynomial pn(z)
which coincides with f(z) in all the points of E, and for which (1)
vanishes. We shall consider in some detail the first non=-trivial case,

m = n+2,




THEOREM 1  In the case m = n+2, let P(z) be the unique poly-

nomial of cegrec n + 1 coinciding with f(z) on E; then each extremal

— ——— —

polyncmial pn(z) with deviation (1) is a polynomial of degree n fcund

by interpolation to P(z) in the zeros of some Tn+1(z); conversely,

any polynomial E£ degree n found by interpolation to P(z) in the zeros

of a Tn+l(z) 1s a polynomial of best approximation,

In the notation P(z) = aozn+1 + alzn + coo  we have to study the
minimum of
n+2 ' n+2 |
A | n+1
o om [Pz = p(z) | = T lagl my | ’
K Tk %k n "k’ | RZ% o! Fk l 53 .

and if |a_| 4 O the solution of this minimum problem is

(z)

n+l. o

P(z) - pn(z) =2l

If pn(z) is an extremal polynomial then pn(z) coincides with P(z)
in the zeros of Tn+1(z)3 if pn(z) coincides with P(z) in the zeros of
some Tn*l(z)p then the difference P(z) - pn(z) is divisible by
Tn+l(z)” hence equal to aoTn+1(z). The case a = 0 is exceptional
in this reasoning but trivial, for then P(z)mpn(z) s 0,

Theorem 1 is especially significant in the case that E is real,
for then {23, below) a suitable polynomial Tn+1(z) can be chosen to

vanish only on E; the corresponding polynomial pn(z) interpolates to

P(z) and hence to f(z) in n+l points of E; these n+l points can be

e



chosen to be independent of f£(z). However, we do not assert that
all extremal polynomials pn(z) can be found in this way; the poly-
nomial Tn+l(z) is not necessarily unique, and under some conditions
may be chosen to have not all its zeros on E3 since f(z) is assumed
to be defined only on E, interpolétion in points not on E to £(z)
has no significance,

Theorem 1 has been established for the case of (1) as a measure
of approximation, but extends at once to various other measures of

approximation on E, such as

(2) max [ |20 < o050 | |0 >0 s
0 ' :
(3) b P | £z = Paln) |72 >0 7O

Indeed, Theorem 1 extends to an arbivrary measure of approximation
which is homogeneous (not necessarily of degree unity) in the in-
dividual errors If(zk) o pn(zk)l°

For deviation (3) with p > 1, the polyncmial pn(z) of best
approximation is unique; if two polynomials have the same deviation,
half their sum has a smaller deviation,

It follows by reasoning due to Fejér [3] for deviations (1), (2)

s

(3), or even tor more general deviations and more general point sets

that the zeros of Tn+l(z) lie in the convex hull of E, The zeros of



the Tn+l(z) have been studiea in more detail by Fekete and von Neumann
[5] with devia*zon (2) and by Fekete [L] with more general deviations,

83. Zercs of T-polynomial for E real, Methods developed by

Korkine and Zolotareff [6] and by Achyeser [1] for approximation on an
interval apply with some rodification to the present study if E is real.
.Like Fejérg we use a deviation § of considerable generality.

Fejér assumes merely that his norm (which he calls a monotone
deviation) is defined for polynomials of given degree,6 rather than for
arbitrary erroar functions of tha form f(z2) - pn(z)‘ and assumes that
his norm has a mcno%cnic property for pclynomials which may have zeros
on E, He requires that the norm be greater for any polynomial

g(z) = 2"+ eoe of degree n than for any underpclynomiali h(z) = 2 s

of the same degree, here h(z) is defined to be an underpolyncmial of

g(z) if n{z) = g(z) on the subset cf E on which g(z) vanishes, and 1f
|n(z)| < |g(z) on the remaining subset of E. For the case of polynomials
Fejér's roguirenents are identiral with ours. '1is norm is more general
than £ in ~he sense that because defined only for pclynomials of given
degree it may depend ccnceivably on special intrinsic properties of
polynomialis, such as coefficients or values in points not on E, hence
may not be defined or not subject to monotonicity requirements for more
general functions, Qur & is defined for functions nct necessarily

polynomials and depends only on the errors at the individual points of

E. We state our results for an extremal polynomial, but we shall prove



. y n . A

elsewhere that the set of extremal pclynomials x  + ¢-c for deviaticu
R ] , ’ n )

(1) coincides with the set of all polynomials x + °°° having no

underpclynomials.

THEOREM 2. Let E he a real point set Xy, X5, o0

— e e - ——

with

&

%€ X, o and suppose m = n + 2, let 6[€),8,, -ov , B ] bea

positive function of the non-negative variables sk when stk > 0,

which decreases whenever all the §. not zero decrease and the 8

—— K e— — ek

which are 2zeco remain unchanged. Let Tn?,(x) be the (or a)
= e i e e, B

T-polyromial of degree n - 1 for E waith the deviation

8[]Tn+l(x1)|ﬁ !Tml(XZ)I” ooe ITn+l(xm)I]° If & is a zero of

Tn+1(x)-" then at least one point x, at which Tml(x)/(x - &)

does not vanish lies in each of the intervals - < x £ & and

Ef x ¢« w, If £ and n(>E) not necessarily distinct are two zeros

of Tml(x)“ then ar least one point X, at wnich T (x)/(x = E)x - M)

[—— N o

does noi vanisn sataisiies the inequsl:ities &€ X 5?} o

We do not assume all the zeros of Tn+l(x) real, but the
reasoning of Fejér 1& valid, ard hence all zeros lie in the
convex hull of E, so these zeros are all real,

We set first Tml(x) = (x - £)9(x), and introduce the auxiliary

polynomial of degree n ~ 1: F(x) =z [(x -&) - 6]?()()0 If only points



x, at which @(x) vanishes lie in the interval E & x < oo, we choose
€ negative but so smail that no pcint of E lies in the interval

& +€ <x<¢ . There exist points of E at which @(x) fails to
vanish, for we have m = n+2; all such points lie in the interval

- o <x < &+€; at such a point, xj we have F(xj) I < Tn+1(xj)J

unless the latter number is zero; at each point xjin the interval

2 € x < oo we have F(xj) = T

n+l(xj) = 0, so the deviation of F(x)

is less than that of Tn+1(x) and the latter polynomial is not extremal.
If only points X at. which(f(x) vanishes lie in the jnterval
- < x ££, a similar discussion with suitable choice of positive
€ leads to a similar contradicticn. The first part of Theorem 2 is
established,

The second part of Theorem 2 is established similarly. We
set Tn+1(x) = (x~§)(ra7)?(x)9 and introduce the auxilary polynomial
of degree n+l: F(x) = [(x=§)(x-Y) - e]?(x)g where €(>0) is chosen
so small that the zeros & & amd 70(>§o)of the square bracket are real,
with no point of E in the open interval between £ and go or in the
open interval between n and Mo° There exist points of E at which
?(x) is different from zero, for we have m 2 n+2; if all such points
%y lie exterior to the interval & € x % M, we have < |Tn+1(xj)|

unless the latter number is zero, so Tn+l(x) i1s not an extremal

F(xj)

polynomial. This completes the proof. It is also true, and may be

proved by choosing € negative, that at least one point X at which



P(x) does nnt vanish lies in the pair of intervals =-oo < x ¢ e

qé X, < o0, but a stronger result has already been established,

Theorem 2 shows the impossibility of various orderings of the points
p

X and the zeros of Tn+1(x)° We mention, as a consequence of Theorem

2, some explicit situations which cannot occur; w o not formulate

o
explicitly the situvuations obtained therefrom by -sal of ordsr, .
which are of course likewise impossible, That Cases I and II are
impossible follows from the first part of Thercem 2, and the re-
mainder from the second part.

Case I. Tml(r:) =0, & x5 all x (if any) with § < x,_are
zeros of Tn+1(7‘)° The impossibility here follows also from Fejér's
results if x <&

[ 3 + F = 3
Case II. LI {x) has a multiple zero at & X30 all X.k\lf any)
(x)o

Case III. Tm'l (x) has a zero of multiplicity greater than cne at

X_o
&7 x,

Case 1V, (i (x) has a zero of multipiicity greater than two at
£ = X,
> J

Case V, Tn+1(x) has zeros at & and n (>£) not irn Ej all points

with < x are zeros of T .
ith & K n+i

of E(if any) between & and Y; are zeros of T . (x).
G ( n+l
Case V1, Tn+1(x) has a multiple zero at £ (in E) and a zero at
Q(not in E); all points of E(if any) between & and n are zeros of

Tn+l(x )e

-
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Case VII. Tn+1(x) has multiple zeros at Xy and x , § <k; all

points of E(if any) between x, and x,_ are zeros of Tn+1(x)a
. n

Every multiple zero of Tn+1(x) is of order two and lies on E,

It is a consequence of Case II that q cannot be a double zero of
n+l(x) and a consequence of Case I that Tn+1(x) can have nc zero in
the interval x; < x < x, if Tn+1(xl) =0

With the measure of approximation (1), further results are avail-

able, as we proceed to show,

THEOREM 3. With the measure of approximation (1), whenever the

extremal polynomial. T, (x) has a zero £ in the interval 5 <§ < xk+l

that zero can be chosen arbitrarily in the corresponding closed

interval without modifying the extremal character of Tn+1(x)°

As before, we set Tn*l(x) = (x-&)9(x), whence

{ N I
z‘p R RIPRNEEN
3| nd Jek B

}R%%”QWW

R

!

cp(xj)

"k Pj\?(xj)

(xy)

" & R

+ jgi ijj
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The square bracket must be zero; otherwise the last member could

be made smaller by suitable choice of & in the given open interval,
contrary to the definition of Tn+1(x)° Since the square bracket is
zero, the last member i1s independent of the valuve of € in the closed

interval x_* E £ X 1o

COROLLARY 1. If an extremal polynomial Tn*l(x) with (1)

as deviation has two coincident zeros at a point X of E, then one

of these zeros can bte displazed grbihrarily in the interval

X <X <%, without altering the deviation of Tn#l(x)°

The proof follows precisely that of Theorem 3,

It is a consequence of this Corollary that with (1) as a measure

of deviation there exists some Tn+l(x) whose zeros lie on E and are

§322135 for one compovent of any muitiple zero may be shifted con-
tinuousliy to a poini of E not originally a zero of Tn+l(x)9 without
altering the extremal property of the polynomial Tn+1(x); we use
the impossibility of Case VII. This fact is of significance for
Theorem 1; the zeros of Tn+1(x)> namely the points of interpolation
of pn(x) to f(x), may be chosen all distinct,

COROLLARY 2. In the casem = n+2 2 2 and with (1) as deviation,

Pj = 1, there exists a Tn+1(x) with zeros in both x, and x . Indeed,

every T . (x) whose zeros lie on E and are simple vanishes in both
— "n+i it =

x e X,

By the consequence of Corollary 1, at least one of the polynomials



F (x) = [T (
k) ijxxk)

is extremal, The deviations of Fl(x) and F2(x) are respectively

[(x) = %)0q = %) eee (g = %))

I(x2 < -7':1)(3(2 i X3) ene (X2 - xm)l »

and it is clear that the latter is less than the former; a corre-
spording comparison applies %o Fm»l(x) and Fm(x), Then Fl(x) and
Fm(x) are not extremal, so every extremal Tn+1(x) whose zeros lie
on E and are simple vanishes in both Xy and X o This conclusion is
generalized below (85).

Corollary 2 does not extend to arbitrary m and n, as we show by

the example m = 6, X F w2, Xy m vl &, x, = =1, x, = Ly Xg = 1+8,

3
Xe = 2, whers & 1s iInfinitesimal, For the polynomials x2 e,
(x+2)(x+1), (x+2)(x1), x2m19 the deviations are respectively (except
for possible added infinitesimals) 12, 24, 8. 6, so for § sufficiently
small no extremal polynomial wvanishes in X) or Xgo

Even in the case m = n+2, the deviation of Fk(x) is not neces-
sarily convex, considered as a function of X0 We show this by the
example m = §_ Xy ==l =8 X, = -l Xy = 0, x, = d Xg = 1+8; M = L.
The corresponding deviations for Fl(x)g F2(x)n F3(x) are respectively

B(1+8)(2+6)(2+286) = 1§ + 108° + oo , 26(2+6) = L& + 282,

(1+8)2 a1+ 28 + 829 and the non-convexity for § sufficiently small
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follows, This same example shows that Tn+1(x) may have a double zero

on E, for the two polynomials F2(x) = (x+1+8)x(x~-1)(x~-1<=8)
and Fh(x) = (x+1+68)(x+ 1)x(x~1-,) are both extremal, hence
half their sum (x + 1 +~8)x2(x « 1 = 8) is also extremal, Here with
the special choice & = 2% = 1, all three polynomials F2(x)9 F3(x),
Fh(x) have all their zeros on E and are all extremsl,

§u. Approximation by arbitrary families of functions. We

investigate now, following suggestions made to the writers byProfessor
Ostrowskl, best approximation to an arbitrary function F(x) on E:
(X, X5, °oo , X ) by linear combinations of the given functions

Vi(x)p VQ(X)« oos yh+1(x) defined on E, n £ m-1, The measure of

approxamation

] n+l

m &
(1) k:‘.l Hgmk) = P“k)! SR ugq” il

is to be minimized., It will be useful to have the functions %&(x)

satisfy Condition A, namely , that if any n points of E are given,

there exists some linear combination of the %&(x) which vanishes in

those points but is different from zero in at least one of the re-

— i ——i e —— — —— \—

maining points of E, We prove

THEOREM L. Suppose m 2 n+l, and the set ¢,(x) satisfies Con-

dition A, Then there exists at least one extremal function P(x)

defined by (L) which coincides with F(x) in at least n+l points of E,




Iet P(x) be the (or an) extremai function of the prescribed
form which coincides with F(x) 1n the maximum number f of points of
E. If p 2 n+l, the conclusion is satisfied., Otherwise let
P(x) = Z:n+l Po¥,.(x) vanish in this set E' of p(£n) points of E but
be differint from zero in at least one other point of E, For § numer-
ically smail we vonsider

K71

m : !
T Flg) = Plg) - Eotn)

n T

T | T - Plgd - ) |
me i
OoPMdFOR) = Pl )l -5 p () s
K k51

here Ck is defined as plus or minus unity, accoraing as its original
factor is positive or negative. We chocse 6§ so small that on E-E' the
functions F(xx) - P(x.x) and F(.xk) - ?(x.k) - Sy(xk) have the same
algebraic sign., If the last coefficient of § does not vanish, a suitable
choice of positive or negative § yields a smaller deviation for the
function P(x) = §9(x) of the linear family than for P(x). On the other
hand, if the last coefficient of & vanishes, we carn increase |§ |
monotonically so that the deviation remains constant until

F(x) = P(x) = 8¢{x) first vanishes in a point of E-E'; then an extremal
function coincides «with F(x) in p+1 points of E, contrary to hypoth-

esis., This contradiction completes the proof.
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“Ja
Of course for approximation by polynomials we have ¥ (x) = x l,

V=1, 2, °°° , n+1, and we need merely set @(x) = (Xexi)(x-xé) St (x~x;)

to show that Condition A is satisfied, where the xL are the given n
peoints of E,
Condition A need not be satisfied for an arbitrary set of func-
tions ¢y(x); indeed we might have each ¥,(x) constant cn E or on a
subset of E. But 1f there always exists some linear combination of
the ¥,(x) which assumes n+1 arbitrarily prescribed values respectively
in n+l arbitrary points of E (for which various sufficient conditions
are well known), Condition A is satisfied, Adding to this "solvence™"
condition a similar one for "unisolvence! properties of approximating
functions of a general, not necessarily linear family, are studied in [8].

Likewise_, suppose whenever n columns are chosen from the matrix

: y;l(‘xl) S('l(xe). & e e e y')l(xm)
5&2(3(1) %2()(2)» s e o o ¢2(xm)
y)n+l(xl) :/'n+l(x2) et s[)n+l(xm)

there exists some column not linearly dependent on them; then the
functions %, (x) satisfy Condition A,

5. Totality of extremal polynomials as a convex set, It is

clear from the triangle inequality that with (1) as deviation the

totality of polynomials pn(x) of given degree cf best approximation
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Lo an arbitrary f({x) on an arbitrary set E form a convex set, in the

sense that if pﬁl)(x) and pgz)(x) are two such polynomials, so also is

(2)

Apél)(x) + (1«-1{)pn (x), 0 < A <1, We proceed to investigate further

the totality of such polynomials in the case that E is real, more

especially when E consists of m = n+2 points, with f(x) = xn+1; thus

we are studying the totality of the functions Tn+l(x) of Theorem 1
in this case.

The points Yy+ Yoo °°° s ¥ are said to separate the points

n+}

Xys Xge 00 5 X, (we suppose X < xk+1) 1f and only if we have

' £ £ = [ =1
(53 NIV TR YT T T ¥ s

and the separations 1s said to be streng if and only if this relation

heclds withou® the equality signs.,

THEOREM 5. If we se* P, (x) = ;Dk(x«'xj)g k=1, 2, soo , m2,

+1

then the polynomials P(x) = 0+ bx™ + ..o whose zeros separate

the points X are precisely the polynomials

— b it

n+2

(6) P(x) = kzi /\kPk(z)8 Ak 20, E:Ak =1

Every polynomial P(x) of form (6) with every )k > 0 has zeros

strongly separating the s for we have Pn+2(xn+2) > 0 Pn+1(xn+1)

-Pn(xn) >0, o _ whence P(xn+2) >0, P(xn+l) <. 0 P(xn) > 0, °eo

<0,
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Consequently every polynomial which is a limit of polynomials P(x)
with hk > 0 also has zeros separating the X5 SO the sufficiency of
(6) is established.

Conversely, let the zeros of P(x) = xn+1

+ bx™ 4+ eoo separate
strongly the points X5 Each zero of P(x) is simple, so we have
P(xn+2) >0, P(xn+1) <0, P(xn) >0, °°° , The linear independence
of the polynomials Pk(x) implies that we can write P(x) = ZRkPk(x),
whence Ak = P(xk)/Pk(xk) >0, Moreover we have Zlk= 1. Every

olynomial P(x) = xn+1 + ooo wWhoSe zeros separate the pcints is
polyn P e

the limit of a variable polynomial of the same form whose zeros sepa-
rate sirongly the x , so Theorem 5is established,

In every case under Theorem 1, the totality of extremal poly-
nomials Tn+l(x) forms a convex set, By a basic extremal polynomial
we understand an extremal polynomial which cannot be expressed as a
linear combinaticn (with positive coefficients) of two distinct
extremal polynomials., Since the set of all extremal polynomials is
convex, closed, amd bounded, each extremal polynomial can be expressed
as a linear combination of basic extremal polyncmials. It follows
from Theorem 3 and its Corollary lthat if E is real, every basic
extremal polynomial has its zeros simple and lying in points of E;
every extremal polynomial can be expressed as a linear combination

with positive coefficients of these, and these are finite in number,
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We choose row m = n+2; let r,{x) denote a smallest pasic set of
extremal polynomials; the tctaliiy of extremal polynomials are then

precisely “he set

12t the poirts x}1 be the common zeros 2f all the rj;(x)v and the

remaining points of E be the poir*t: x. We set £(x) = TT#(I*XP)D

r?(x) = 8(x)qf,(x)e Then the totality of extremai polynomials is

precisely the set,

S@Taapx), Ao 0. TAer 1

Exzept in the case (m * n+c¢) that but one extremal polynomial exists,
thers are at least wwo casic extremal pclynomials, the totality of zeros

of those polyncmials consists of E, and each polynomial qP(x) vanishes

in all the points x ., but one. Each x;/is a non-zero >f some q?(x)o
Thus the set Qo(x) 18 precisely a set of the kind ccnsidered in
Theorem 5. waitn a sligh® change of nctation. The zeros of a poly-
nomial ro(x) consisv (by Theorem 5) of the Xy and a set of points
which separate the xy; the X need no*t be distinct from the latter

- . . . n+2 hich i sh
set. Converseliy any polynomial Tn+1(x) = x + eoo WN1Ch vanisnes

in the x,, ana whose other zeros separate the xz/is an extremal poly-
7

nomial, Hsre we have a complete geometric characterization of the

extremal polynomials, The zeros of every extremal polynomial separate



the points of E, by Theorem 5,
It is a consequence of Corollary 2 to Theorem 3 that if P =
n2 1l m=n+2, every basic extremal polynomial vanishes in both x
and X,» SO there are at most n such polynomials, Every extremal
pclynomial vanishes in xq ard Xne
As an illustration we choose § as in §3, n = 5, x= =1 = 5,
x5 = =1, xy = 0, x =1, X5 = 1+86, &= 21/2c1, By =1, and set
P (x) = TT(x“x ). The three polynomials P,

39
j#k
and an ext.remal polynomial with a double zero is 5[P2(x) + Ph(x)];

h are all basic,

here x3 = 0 is both a point of E and a zero of some q§:(x)o

6. Least p-th power approximation. The following theorem

is based on a remark made to the writers by Dr, A. Dvoretzky:

X

THEOREM 6. Let E consist of the real pcints e X5, 000, X

(m 2 n+1), let F(x) be defined on E, let p(O«p<l) be given, and let

the functions %i(x)g %é(x)g oio s ¥%+1(x) satisfy Condition A (8h).
n+

Then every function P(x) = E:qub(x) of best approximation measured
1

EX the deviation

2 n

coincides with F(x) in at least n+l points of E.

F(x ) - P(xk)‘p

As in the proof of Theorem L, suppose P(x) toc be an extremal

function which coincides with F(x) in precisely ?(30) points E' of E.
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We show that the assumption p = n leads to a contradiction, lLet

P(x) = E:ﬂ;@]jpﬂ(x) vanish in E', but be different from gero in at least
cne other point of E., The function P(x) + 6¢(x) belongs tc the linear
family under consideration.

For & numerically small we consider

k%l P F () = P(x) = 89(x )P,

a sum of which p terms vanish and of which other terms may conceivably
be constant, Each of the remaining terms (at least one of which must
exist, by the definition of ?(x» is of the form |A + lep, where A and
B are constants with B # 0. Unless the function |A + BSIp of & with
B # 0 is zero, its graph is locally concave downward, so a sum of such

functions plus a constant cannot have a local minimum, Tpus (9) is not
a local minimum for &§ = O unless at least one of the remaining terms
vanishes for & = O; hence P(x) coincides with F(x) in at least p+l
points of E, coantrary to the definition of p .

Theorem 6 implies that every extremal polynomial P(x) is found
by interpolation to F(x) in n+l points of E; there exist but a finite
number of polynomials interpolating to F(x) in n+l points of E, so
every extremal polyncmial can be found merely by comparing their
measures of approximation.

Of course Theorem 6 implies that every T-polynomial, namely

a polynomial ngz(x) = xn+l + bx" + soe of

o



2l

(p)
Tngl

mn p
minimum norm Za Py (xk)l , has all its zeros on E, whether or not
k=
we assume m = n<2,

57. Zeros of T-polynciiials, continued. We return tvo the situation

of 83, to study in more detail the location of the zeros of T-polynomials.

THEOREM 7. With the hypothesis of Theorem 2, the ordered zeros

Y1s Fos °°° s Ypu1 of every Tn+1(x) separate a suitably chosen ordered

subset E': xi, X5p 000, x;+2.g£ E, in the sense of (5).

We establish this result by the use of the cases of impossibility
enumerated in 83 as a consequence of Theorem 2, by examining the number i
NT(x) of zeros of Tn+l(x) not greater than x and the number NE'(X) of
points of E’' not greater than x, as x increases monotcnically. We

show that for every x in the interval X € x = X we have
(10) NT(x) E NE,(x) & NT(x) +1
Always as x increases monotonically we adjoin each new X to E' if and ;

only if after adjunction the relation (10) holds for x = X0 In the

proof the word zero refers to a zero of T  ,(x).

Each simple zero at a point of E shall be called a zero of the

S |

first kind; as x moves across such a zero Yy each of the numbers NT(X)
ard NE‘(X) is increased by one unit, so that the difference is un~
changed and (10) if originally valid persists with the same equality
and the same inequality signs as before, Each other zero is called

v
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Kk there is one more zero

than points of E, so as x increases through Yy the difference

E!

with the respective signs < and = it becomes valid with the signs = and

N, (x) - NT(x) is decreased by one unit, and if (10) holds for x < Ty

< for x> Yo The precise content of the impossibility of Cases V,

VI, and VII can be expressed: between two successive zeros of the

second kind must lie at least one pcint of E not a zero,

The relation (10) holds for x = x,3 ip every case we choose

xi =X, 2 point which cannot (CaseII) be a double zero, The relation

(10) then holds for x = ¥ if ¥ is a zero of the first kind and also
holds (Cases I and II) if Yy is a zero of the second kind,

If Tn+1(x) possesses only zeros of the first kind, the conclusion
is immediate; the relation (10) holds in each X and some X is
(m > n+l) not a zero, whence NT(xm) = n+l < NE'(xm)°

If Tn+l(x) possesses zeros of the second kind, let Yy be the first
(i.e., smallest) of them, By Cases I and II relation (10) hclds for
X =y, The next succeeding zero yp of the second kind must be sepa-
rated from Yy by at least one point of E not a zero, so (10) holds
also for x = Ypo When we arrive at the last zero yj of tpe second
kind we have NTCyj) £ NE'(yj)° Cases I and II show that some x> ¥y
is not a zero, so we have NT(xm) = h+l < NE,(xm), which completes the
proof .

Of course it is a consequence of (6) that the points ¥y are the

respective limits of points that strongly separate the points x& of E.
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It is to be noticed that Theorem 7 applies in particular to the
deviation (3), for all p > 0,

88. Determination of the polynomials ngl(::)o We have studied

(Theorems 2 and 7) the separation of the points of E by the zeros of
Tm_l(x) especially by the method of adding positive or negative con-
stants to various linear and quadratic factors of Tm_l(x)o It is
conceivable that further information could be obtained by similar
consideration of factors of mel(x) of degree higher than two, How-
ever, it turns out that the description of separation indicated in
Theorem 7 is completely characteristic of the extremal polynomials,
at least those of degree m-1l and deviation (1), as we proceed to
indicate., In Theorem 8 the set E need not be real.

THEOREM 8. The totality of T-polynomials Tm_l(z) of degree

m - 1 for E: (219 Zy, co0 zm) with measure of approximation

m
(11) P(Tpay) =?P1!mel(zi)l e P10

is found as follows, With the notation w(z) ='TTn(z = zi)g arrange
Sk — ) 5 it S

the numbers Pi|w'(zi)| in order of magnitude, and choose mel(zi) =0

except in the subset E's (zi zg, ooo z?) of E on which Pi]uﬁ(zi)|

»

takes ifi smallest value; on E' choose Tm=l(zi) arbitrarily but so

that Tm-l(zi) - Zi aﬂ(zi)g )i 20, e)i = 1; then we have




2l

2i
' zi 2

Tm_l(z) = wl(z) %

where we set A, = O in the points of E not in E!,

we: Selbte oS 9L

Any polynomial P(z) of degree m=1 is expressed by Lagrange's

interpclation formulas

mP(Zl) (z
(d2) M) x Do) oe,

"~

g

-1

and for P(z) = 2"~ + =00 we have consequently

m P(zi)
(13) 1 .Z:(L)_'(Z—) °

1 1

Thus Tm_l(z) is the (cr a) polynomial P(z) defined by (12) where the

arbitrary numbers P(zi) are chosen to satisfy (13) and to minimize
' P(z,)

i
w (z,)

1

'P(zi)

%]
Erfcs)

Rl %Pi

It is now clear that the minimum of p(P) is found by choosing

m P(zi)

and further by choosing P(zi) ~ Aiw‘(zi) in the manner described in the
statement of Theorem 8. The pulynomial Tm_l(z) is unique when and only

when E' consiste of but one point,
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In any case, it follows from Theorem 5 that the zeros of Th=l(x)
separate the points of E, provided E is reai,

Theorem 8 is somewhat similar to the determination of the
T-polynomials using (2) as deviation, by Fekete and von Neumann [5],

later studied more deeply by Fekete [L].

COROLLARY. Under the conditions of Theorem 8 and with the choice

By o= Po/ho'(zi)l, P, > O, for every i, the set of T-polyncmials

Tm_l(z) is precisely the set

m A.w(z)}
=\ 1

= m
;J‘—z-zi‘v 2 %0, §)i=l .

In other words the totality of T-polynomials is the convex set depend-

ing on the pclynomials Pk(z) = w(z)/(z-zk)p and if E is real is_

precisely the set of polyncmials whose zeros separate the points of E.

The last statement follows from Theorem 5.
On another occasion the present writers expect to determine and

characterize the T-polynomials defined by deviation (3), with especial

reference to separation of points of E by zeros,

89. Mutual separation of zeros of the Tn(x). Atkinson [2] has

indicated that the classical properties [e.g., Szegd, 9, 83.3] of
separation of zeros of polynomials orthogonal on a finite real in-
terval are exhibited also by the zeros of the T-polynomials for that
interval with deviation measured by the integral of the weighted

p-th power, p > 1; the classical case is precisely that of the




T-polynomials for p = 2, The methods of Atkinson apply without
essential change in our present case of deviation (3), p > 1, where

E is real, as we now indicate,

If Tn(x) is the necessarily unique polynomial Tn(x) = x4 bxnﬁl + ooo

which minimizes

(1b) L P a0 ¥ s P

and if t(x) is an arbitrary pclynomial of degree n-1, it it readily

proved by variational methods that we have

m :
(15) I Pl T (2 ) P selT ()] t(x) =0,

which represents a kind of orthogonality.
We omit the elementary proof of the

LEMMA. 1f o¢ 2nd 3 are real, we have

sr:['xlf"lp_2 * [3l[3|p-2] = sg[°< + /3] ;

if either of the numbers in square brackets vanishes, so does the other,

We suppose the points X, of E so arranged that x < X, G B & T
2 -
and of course m = n+.,

THEOREM 9. 1Ii ¢ is real and 0 < ¥ § n, the polynomial

1N

]
LIN
»

o

F(x) = Tn(x) + cTy(x)(§0) has at least ¥ sign-changes in I: X




The function F(x) cannot vanish at all points of E. If the
theorem is false, there exists a polynomial G(x) of degree less than

V which throughout I has the same sign as F(x), and which by the Lemma

then has the same sign throughout I as
-2 |p-2
Tn(x)"l‘n(x)lp + cT‘,(x)lT,/(x)ip o

Thus we have

(16) ;ilpk {'Tn(fk)lp‘lsg[Tn(xk)] + ¢ Tﬂ(xk)|p-lsg[Tﬂ(xk)J} = G(x)>0,
But (16) contradicts the relation (15) for orthogonality of G({x) to

Tn(x) and Ty(x), which completes the proof. We emphasize the fac* that
the polynomial G {x) is subject to no ccndition at a point of I at

which F(x) vanishes but dces not change sign, and is subject tc no
condition at either of the pcints Xy Or X if F(x) vanishes there, In
particular the choice ¢ = O shows that Tn(x) itself has at least n

sign changes interior to I, so all the zeros of Tn(x) are simple and

lie in the open interval X < x < X

It follows from Theorem 9 that the polynomial H(x) = Tn(x)+cTn_l(x)
has at least n-1 sign-changes in I, thus has at least n-1 zeros of odd
order, so has its n zeros all real and distinct. Then the polynomials

5. t
?n(x) + cTn_l(x), Tn(x) + cTnul(x) have no common zero, whence the

polynomial
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(17) T (x) T, (x) = T, (x) T, _(x)

hes np. Feal. 28ros. Erom e cosfTicismnts of &> and x> L

in Tn(x) and
Tn_l(x) respectively it follows that the coefficient of x2n-l in (17)
is negative, so we have proved

THEOREM 10, For all real x the polynomial (17) is negative,

From Theorem 10 it follows that the polynomials T (x) and Tnul(x)
have ne common zero, and also, by differentiationof the function
Tn(x)/'l‘n_l(x)9 that the latter increases monotonically wherever it is
defined. If & and » are two successive zeros of Tn(x), the function
Tn(x)/Tan(x) vanishes for x =& and x = 7s hence must have a dis-
continuity in that interval:

THEOREM 11, The zeros of Tn(x) ase strongly separated by those

2
of anl(x)’ n=2,
Theorem 11 is the main result of §9.
We have already pcinted out that every Tn(x) has 211 its zercs
interior to I, The monotonic character of Tn(x)/Tn-l(x) can be

written for x> x in the form

Tn(x) R Tn(xm)
Tnml(x) Tnml(xm) ’

so (as is likewise pointed out by Atkinson for the polynomials that he
considers) the sequence

T_(x)

T—-(x—)-D nlo’l’ 2’ o0 o0

nm

increases monotonically with n,

July 7, 1953




29

BIBLIOGRAPHY

[1] N. Achyeser, Verallgemeinerung einer Korkine-Zolotareffschen
Minimum-Aufgabbe ;Comm. de 1°Inst. des sc. math. et mech. de 1’ Univ,

de Kharkoff, (L) vol. 13 (1936) pp. 3~1kL.

=
N
v—

F. V. Atkinson, Toer die Nullstellen gewisser extremaler

Polyncme, Archiv dev Mathematik, vol, III (1952) pp. 83-86.

[3] L Fejérp Uber die Lage der Nullstellen von Polynomen, die aus
Minimumforderungen gewisser Art entspringen, Math., Ann, vol. 85
(1922) pp. L1-h8.

[L] M. Fekete, On the structure of extremal polynomials, Proc., Nat,
Acad, Sci, vol. 37 (1951) pp. 95-103.

[5] M. Fekete and J. von Neumann, ﬁber die Lage der Nullstellen
gewisser Minimumpolynome, Joer. deut, Math. verein. vol. 31 (1922),
pp. 125-138,

{6] A. N. Korkine and G. Zolotareff, Sur un certain minimum Nouvelles
Annales vol. 12 (1873) pp. 337-355.

[7] P. Laasonen, Einige Satze {iber Tschebyscheffsche Funktionen
Systeme, Ann. Acad., Sci., Fennicae, Sec. A, ﬁath° Phys. No. 52 (194L9).

[B] T. S, Motzkin, Approximation by curves of a unisolvent family,

Bull, Amer, Math, Soc., vol. 55 (1949) pp. 789-793.

r

(9] G, Szegd, Orthogonal Polynomials (New York, 1939).



	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035

